
Deep Learning Based Face Recognition System with Smart
Glasses

Ovidiu Daescu

Department of Computer Science

The University of Texas at Dallas

Richardson, Texas

daescu@utdallas.edu

Hongyao Huang

Department of Computer Science

The University of Texas at Dallas

Richardson, Texas

hhuang@utdallas.edu

Maxwell Weinzierl

Department of Computer Science

The University of Texas at Dallas

Richardson, Texas

maw150130@utdallas.edu

ABSTRACT
Individuals with prosopagnosia have difficulty in identifying dif-

ferent people by their faces. Our goal is to design and develop a

face recognition system with wearable glasses to recognize faces

and provide identity information to users. Unlike other existing

systems that run locally on glasses or cellphones, we introduce

a client-server architecture system for facial identification. We

designed and implemented applications both on a pair of smart

glasses and a cellphone to capture images and communicate with

the server. Deep Convolutional Neural Networks (CNN) were cho-

sen to build our face recognition on the back-end system and we

achieved 98.18% accuracy for face recognition. The system is de-

signed to handle new identities and new faces without having to

rebuild the model.

CCS CONCEPTS
•Human-centered computing→Accessibility; •Computing
methodologies → Neural networks.

KEYWORDS
Convolutional Neural Network, wearable device, face recognition,

augmented reality, prosopagnosia

ACM Reference Format:
Ovidiu Daescu, Hongyao Huang, and Maxwell Weinzierl. 2019. Deep Learn-

ing Based Face Recognition System with Smart Glasses. In The 12th PErva-
sive Technologies Related to Assistive Environments Conference (PETRA’19),
June 5–7, 2019, Rhodes, Greece. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3316782.3316795

1 INTRODUCTION
When participating in a social event, recognizing the identity of a

person is the first step to engaging in a face-to-face conversation.

Likewise, when meeting unknown or unfamiliar people, we often

want to know their identity along with other information such as

relation, age, or job. In social situations, it can be embarrassing for-

getting the name of someone you know. Moreover, prosopagnosia,

or "face blindness", a cognitive disorder resulting in the inability to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PETRA’19, June 5–7, 2019, Rhodes, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6232-0/19/06. . . $15.00

https://doi.org/10.1145/3316782.3316795

recognize familiar faces [12], is suggested to affect up to 2.5% of the

U.S. population [3][8]. Hence, it has become an interesting research

topic to develop a wearable system that can aid visual memory

for individuals, especially for helping to improve the social life for

people who are suffering from prosopagnosia.

With the emergence of smart glasses, we can enhance the infor-

mation available in real-world social environments. Smart glasses

often consist of a wearable display, a camera which provides a

similar viewing angle to the viewing angle of your eyes, and con-

necting capability to other devices. It then becomes possible to

build a system to perform real-time face recognition tasks with the

help of smart glasses. Our system combines modern computer vi-

sion and machine learning models with wearable technologies. The

system is general enough such that it does not require re-training

for new users or new identities while also being fast enough to run

in real-time.

1.1 Our Contributions
The computational efficiency is important for applications on smart

glasses and mobile devices. We introduce a server based model to

carry out the image processing and face recognition tasks. With the

arrival of 5G technologies, we will be able to achieve better com-

putational efficiency on data transmission across wearable glasses,

mobile devices, and servers. Our glasses-phone-server framework

runs the following process. We use the cellphone as a controller to

trigger the camera on smart glasses to capture facial images of the

person of interest. The captured images are sent to the cellphone

and then uploaded to the server through the cellphone application.

The face detection and recognition tasks are carried out by our

model running on a server. The identity of the person is retrieved

from server and displayed on the cellphone and glasses. On the

back-end side, we trained a deep convolutional neural network

(CNN) to perform the face recognition task. We also built a real-

time system to use the model in a video stream and set it up to run

on both a Raspberry Pi and a laptop. This local application displays

a bounding box on the face along with a label with the identity.

It also allows the user to add new identities and new images for

existing identities.

We adapted and modified the architecture of the face recogni-

tion system in [13] to deploy on our back-end system. Our first

modification is that we used a more recent CNN, Inception-ResNet

[14] in our back-end system. We also modified the neural network

by utilizing the final layer as a L2-normalized vector embedding

layer instead of a final softmax layer in the original version of this

network. The model we constructed on the back-end side is able

to create a mapping between the facial image of a person and the

218

https://doi.org/10.1145/3316782.3316795
https://doi.org/10.1145/3316782.3316795
https://doi.org/10.1145/3316782.3316795

PETRA’19, June 5–7, 2019, Rhodes, Greece Ovidiu Daescu, Hongyao Huang, and Maxwell Weinzierl

embedding of their identity. After the training phase, the neural

network is able to create this mapping and generate an embedding

for every facial image. A centroid vector is also created for each

identity based on all embeddings of the same identity and will be

further used for recognition. For any unknown face, we allow users

to assign an identity to it and upload this image along with the

user-specified identity. The trained CNN first maps a new facial

image provided by user to the embedding of the identity. Then the

model recalculates the centroid vector of this identity. If it is a new

identity, a new centroid vector is created. Therefore, the back-end

system is able to learn these new faces without going through the

whole training process.

For privacy concerns, we do not store actual images taken from

the glasses on our back-end system. Instead, we only store facial

embeddings extracted from images; it would be very difficult to

reconstruct facial images from embeddings without direct access

to the model. We discuss this further in Section 3.1. Additionally,

for each user, an independent facial identity profile is stored so

that any new identities added by a user will not be shared across

all users. User requests for facial identification are only compared

against identities the user has previously identified and saved.

We organize this paper as follows. The next section discusses

related work. In Section 3, we present the system architecture and

the implementation details of our face recognition system. Method-

ology and configurations to build our back-end face recognition

model are described in Section 4. We also present the process of

training the deep neural network in this section. Section 5 presents

the performance of the face recognition model along with the eval-

uation of performance on the whole system. Finally, conclusions

and future work are discussed in Section 6.

2 RELATEDWORK
Face recognition is one of the most studied research problem in com-

puter vision. Problems associated with face recognition have been

studied by researchers from various areas for over four decades

[19]. Recently, great improvements of face recognition have been

presented with the help of deep learning, especially deep convolu-

tional neural networks. Deep neural networks are not limited to

facial identification problems, recent methods show improvement

in constructing general models for the task of face verification and

recognition. Schroff et. al [13] proposed FaceNet, a deep convolu-

tional network based system, that can directly learn a mapping

from face images to a measure of face similarity. A deep residual

network was proposed by He et. al [4] for more general image

recognition tasks. They presented a residual learning framework to

reduce the training time of networks that are substantially deeper

than those used previously. Szegedy et. al [14] introduced the resid-

ual connections in conjunction with a more traditional Inception

architecture. The introduction of residual connections not only ac-

celerated the training process of neural networks, but also improved

the performance on many image recognition tasks.

In the meantime, researchers have been working on solutions

to improve the social life for people affected by prosopagnosia.

In the technology community, a few systems using variations of

wearable devices have been reported in the past few years. Krishna

et. al [9] presented a wearable facial recognition system to provide

aids in social interactions for visually impaired individuals. Their

system runs processing tasks on a nearby USB-connected computer

which is not practical in real-world situations. The evaluation of

face recognition task is limited to only 10 subjects’ faces. In order

to mobilize the recognition system, new systems involving smart

phones and more powerful wearable devices have been presented.

Wang et. al [18] pushed the image processing and face recognition

task to cellphones. Images and results are transmitted to glasses

via a video driver board. However, the system requires collecting

images and training the algorithm prior to usage. Hence it is only

able to identify faces included in the offline trainedmodel. Mandal et.

al [11] implemented the face recognition system on Google Glasses

with the emphasis on identifying faces under different lighting and

various angles of faces. Although their system has been evaluated

on 88 subjects’ faces, retraining of the model is still required for

new identities which are not in the initial data set.

3 OVERVIEW OF FACE RECOGNITION
SYSTEM

Our goal is to construct a system that can capture images through

the smart glasses based on users’ commands and then return the

face recognition result back to user. The system needs to be general

enough such that it does not require re-training for new users or

new identities while also being fast enough to run in real-time.

Hence, we propose a client-server architecture including a pair of

smart glasses, a cellphone, and a back-end server to perform the

face recognition task. Figure 1
1
gives the general structure and

process of the whole system. The client side includes a pair of

smart glasses and a cellphone connecting to the glasses through a

Bluetooth connection. The server side system handles the image

processing and the face recognition tasks.

On the client side, we designed applications both on the smart

glasses and cellphone. The main face recognition process of client-

side application goes as follows. When a user opens the application

on both devices, the phone application will check the Bluetooth

connection and ask the user to make connection with the glasses.

The user then sends a request to the glasses asking to take a pic-

ture and the phone application retrieves the image captured on

glasses. The phone application initiates an HTTP post request in

the background and sends the captured image to the server. In the

meantime, the user may become closer or have a better angle of

the person of interest. Hence, we designed the application so that

the user is able to make a new image-capturing request while the

server is processing the previous image. The face recognition result

is displayed on the screen of both the cellphone and the glasses as

soon as the results are received by the client.

The computing power on wearable devices and cellphones is

limited compared to a server. Running face recognition tasks on

wearable devices also drastically reduces battery life. Besides, many

face recognition systems are limited to only recognizing identities

that were in the offline training set of the model. When dealing

with unseen faces, they have to go through the training phase again

to rebuild their face recognition model. In order to make our model

more general, while fast enough to handle new faces, we chose to

move the image processing and the face recognition task to a server

1
https://draw.io/

219

Deep Learning Based Face Recognition System with Smart Glasses PETRA’19, June 5–7, 2019, Rhodes, Greece

Figure 1: Structure of whole system design

and construct the model using a deep convolutional neural network.

All image processing tasks are handled by our back-end system.

Upon receiving a new image from the cellphone application, the

system first runs face detection and crops facial regions detected

in that image. All faces appearing in the image will be fed into

the trained neural network for face recognition. Identity results of

cropped facial regions are sent back as a server response to client’s

request.

We adapted the architecture of our face recognition system from

FaceNet [13] but rebuilt it with a different deep convolutional neu-

ral network based on Inception-ResNet [14]. The neural network

produces a function which maps a cropped image of a person’s face

to a vector which represents the identity of that person. Addition-

ally, an average (centroid) vector can be produced for each identity

based on multiple images from different poses and backgrounds

and this centroid vector maintains the same distance properties.

Therefore, maintaining a independent centroid vector for each iden-

tity allows for an efficient method of determining the identity of

a person. We can also determine a rejection distance by which a

vector can be said to not belong to any of the known identities if

it is further than that rejection distance from any of the known

centroid vectors.

The neural network will first generate an embedding of the face

image, which is a vector for the facial region inside that image. Then

it will determine the identity based on the embedding’s distance

to every known identities’ centroid vector for that particular user.

As we mentioned in Section 1, users can use our application to

add new identities along with multiple images. In this case, the

neural network creates a new centroid vector of this user-specified

identity. Each time a user uploads a new facial image with a known

identity, the model first generates the embedding of this image. The

model then calculates a new centroid vector of this identity by using

this new embedding vector and other embedding vectors of the

same identity. Hence, the system can gradually learn to recognize a

face better and better as new images of the same person are added,

improving the quality of the centroid vector for that identity.

3.1 Implementation of Client-Server
Architecture

On the client side, we built an application on smart glasses and

an application on an Android smart phone. We implemented two

major functions to perform the face recognition task. The user will

first be asked to connect the phone with smart glasses through

Bluetooth connection. Once the connection succeeds, the user can

start the "send request" session on phone which will send an image

capturing request to connected glasses. Upon receiving the image

from glasses, the image will immediately be sent to the server.

Meanwhile, the user can make a new image capturing request on

the foreground by pressing the "send request" button again. We

set up a background thread using Android’s "AsysncTask" API
2

to handle all communication between cellphone application and

the server. The background thread is responsible for uploading the

image to the server and receiving the identity result from server.

We upload images to server with a HTTP Post request. A unique

user ID will be assigned to each user and this user ID is embedded

as a query string in the URL for the HTTP Post request. This ID lets

the server know which user is making a request. The identity of

the person in that image is then sent back to phone as the server’s

2
https://developer.android.com/reference/android/os/AsyncTask

220

PETRA’19, June 5–7, 2019, Rhodes, Greece Ovidiu Daescu, Hongyao Huang, and Maxwell Weinzierl

(a) Displaying captured image (b) Displaying recognition result

Figure 2: Cellphone Application Interface

response to previous request. Once the result is received, we decode

the byte string and display the result as a pop-up message dialog

on both phone’s and glasses’ screens showing the person’s identity

to user. Figure 2a displays the image captured from glasses while

figure 2b presents the pop-up dialog for displaying the result on

both the phone and the glasses.

The smart glasses we used in this project are Epson’s MOVERIO

BT-300
3
, an Android based smart glasses with Bluetooth. We uti-

lized the camera on this wearable device to capture images. Captur-

ing images on demand reduces the load of Bluetooth transmission

between the cellphone and the glasses, which also has the benefit

of reducing battery consumption when running the application.

Hence, the camera on glasses only takes a picture when a user

request is received. Images captured on the glasses have the resolu-

tion of 2560 × 1920 pixels. This resolution allows our face detector

to detect faces up to around 15 feet from in-lab experiments. In

order to reduce the load of Bluetooth communication, we compress

images on the glasses to 85% JPEG quality before being sent to the

phone.

We deployed our back-end system on both a Raspberry Pi and

a laptop with Nvidia GTX1080 GPU. We utilized Flask
4
, a Python

based open source web framework, to handle the server-side HTTP

requests in our implementation.We created an independent identity

model for each user. Each identity model is not shared across the

system. Only embedding vectors of facial images are stored on

the server instead of actual images to maintain the identity model

3
https://tech.moverio.epson.com/en/bt-300/

4
http://flask.pocoo.org/

for each user. When a request from a client is received, the server

system resolves the query URL to get user id so that recognition

task is performed on this user’s unique identity profile. Only the

discovered identities are returned in the request response. Recent

work by Mai et al. [10] shows that it is possible to train models to

reconstruct face images from face embeddings, but this requires

a method to produce embeddings to use for reverse-engineering

images. This further justifies our system architecture, in that all

the face embeddings and face embedding models can be secured

on a centralized server, where only identity results are returned in

the request response and no face embeddings or models are made

public.

4 FACE RECOGNITION MODEL
In this section, we discuss the model we applied and deployed to

our back-end system for image processing and face recognition

tasks. Figure 3 shows the structure of our back-end face recognition

model. Figure 4 visualizes the process we used to build our model

with a deep convolutional neural network. We present the convolu-

tional neural network as a black box to learn and generate the face

vector from the facial images fed into it. The motivation is to map

cropped images of faces of dimension lenдth ×width × colors to a

d-dimensional vector which summarizes the features of that face.

The model which produces this mapping can be trained to produce

vectors which are close in Euclidean distance for identical identities

while far in Euclidean distance for different identities. This allows

a general model to be constructed and trained which produces this

mapping on any given images of faces and identities, regardless of

221

Deep Learning Based Face Recognition System with Smart Glasses PETRA’19, June 5–7, 2019, Rhodes, Greece

Figure 3: Structure of back-end face recognition system

whether the model ever trained on these faces or identities. Once

the face embedding is generated, the face recognition task becomes

a classification problem.

The face vector, namely, an embedding f (x), is a mapping from

an image x into a feature space Rd , where d = 128, such that the

squared Euclidean distance for all faces of the same identity, inde-

pendent of imaging conditions, is small, while the distance between

a pair of images from different identities is large. For the black box

neural network to learn the ability to produce this mapping, we

adapted triplet loss from FaceNet [13]. A triplet is defined by three

elements produced by the neural network. In our case, these three

elements are three face embedding vectors mapped from three facial

region images of cropped face. As defined in [13], we want to ensure

that an image of a specific person xai (anchor) is closer to all other

images of the same person x
p
i (positive) than images of any other

person xni (negative) by some margin α . We use f (xai) to represent

the embedding of an anchor image. Similarly, f (x
p
i) represents the

embedding of a positive image and f (xni) represents the embedding

of a negative image. The goal is to minimize the distance between

f (xai) and f (x
p
i), and maximize the distance between f (xai) and

f (xni), for all possible triplets (f (x
a
i), f (x

p
i), f (x

n
i)) which violate

the inequality in Equation 1 in the training set T .
Therefore, as defined in [13] Equation (2), we want,

Figure 4: Training process structure

����f (xai) − f (x
p
i)
����2
2
+ α <

����f (xai) − f (xni)
����2
2
,

∀(f (xai), f (xpi), f (xni)) ∈ T
(1)

where α is a margin that is enforced between positive and nega-

tive pairs.

The loss that is being minimized while satisfying the constraint

in Equation 1 is,

L =
N∑
i

[
| | f (xai) − f (x

p
i)| |

2

2
− || f (xai) − f (xni)| |

2

2
+ α

]
+

(2)

After a face embedding of each image is generated, we compare

the squared L2-distance between different embeddings. In order to

speed up the face recognition process, a centroid vector is produced

for each identity. The centroid identity vector construction is simi-

lar to centroid vector construction for document summarization.

This centroid vector can be constructed from multiple images of the

same face with different poses and backgrounds. When recognizing

the identity of a face image, our back-end system does not need to

compare with every existing embedding. Instead, we only need to

compare it with the centroid vectors and we can determine whether

the face image belongs to an identity based on some selected dis-

tance threshold. This allows for an efficient method of determining

the identity from a given image.

We constructed the deep convolutional neural network (CNN)

based on a more recent Inception-ResNet [14] architecture. We use

this architecture as a base because it introduces residual connec-

tions in conjunction with a more traditional inception architecture.

It has been shown that the combination of these two methods can

reduce the training time significantly over a GoogLeNet [15] based

CNN, which is used in FaceNet [13]. This more recent network also

222

PETRA’19, June 5–7, 2019, Rhodes, Greece Ovidiu Daescu, Hongyao Huang, and Maxwell Weinzierl

outperforms previous networks on image recognition tasks. Com-

pared with the original Inception-ResNet architecture, we modified

the input image size from 299× 299× 3 to 96× 96× 3. The combina-

tion of utilizing the residual connections in the Inception-ResNet

architecture along with the reduction in input size allowed us to

both fit the model in GPU memory while also speeding up the

training process significantly. Our model trained to convergence

in 240 hours on a single Nvidia GTX 1080 GPU, while the FaceNet

[13] model took 1000 to 2000 hours to train on a CPU cluster. This

modification allows the model to train much faster with only a

minor reduction in accuracy (99.63% on LFW in FaceNet [13] vs our

98.18% on LFW). Our modification of the network does not have

a final softmax layer for identity classification, like some previous

deep learning based face recognition models such as DeepFace [16],

but instead follows the same methodology as FaceNet [13] and

utilizes that final layer as a L2-normalized vector embedding layer

which produces face embeddings.

4.1 Dataset and Preprocessing
Training the neural network requires significant data.We decided to

utilize the VGGFace2 [1] dataset for training and the Labeled Faces

in the wild (LFW) [6] dataset for our hold-out set. The VGGFace2

dataset contains a significant number of images of faces of different

identities whichmakes it perfect for training a system for discerning

between identities. The dataset also has significant variation in

lighting and background environments as can be seen in Figure

5 which helps the model generalize to real-world conditions. We

used 8631 identities with 2821697 total images from VGGFace2

dataset to train the face recognition model. The LFW dataset was

used as a hold-out set due to past work using this as a benchmark,

which allows our system to more easily be compared to other face

recognition system. In total, we used 5749 identities with 13172

total images for testing.

Finding the facial region in the image is implemented with the

help of the open-source library Dlib
5
. This library provides the

fast face alignment algorithm proposed by Kazemi and Sullivan [7].

We utilized the Dlib face detector for face cropping on both the

VGGFace2 and LFW datasets as a pre-processing step. This step

both cropped and aligned the images such that they were 96 × 96

and transformed facial features to be in consistent positions within

these images. The Dlib face detector has an accuracy of 99.54% on

the LFW dataset when utilized to detect facial regions.

4.2 Training
In all our experiments, we trained our neural network with the

VGGFace2 dataset with the stochastic gradient descent method.

Hyperparameters are slightly modified from recommended values

in [13]. Initial hyperparameter tuning focused on ensuring stable

learning with the new VGGFace2 dataset and modified model.

All other training methods followed [13] in which we sampled

identities and images for those identities from the dataset in order

to produce triplets of the form (anchor, positive, negative). These

triplets were used in the triplet loss in order to widen the margin

between identities. In order to ensure fast convergence, given an xai ,

5
http://dlib.net/

we want to select an x
p
i such that arдmaxxpi

| | f (xai)− f (x
p
i)| |

2

2
. Sim-

ilarly, we want to select an xni so that arдminxni | | f (x
a
i) − f (xni)| |

2

2
.

Triplets which already satisfy the inequality in Equation 1 do not

contribute to the loss function in Equation 2. Therefore, these

triplets will not contribute to training and waste computational

resources. We found that bad local minima occur early in training if

we select hard negatives. Thus, triplets were rejected from training

if they satisfied the inequality in Equation 1 already or did not

fall within the semi-hard negatives margin α . As defined in [13],

semi-hard negatives are negative examplars xni which satisfy the

following inequality,����f (xai) − f (x
p
i)
����2
2
<
����f (xai) − f (xni)

����2
2
. (3)

Algorithm 1 Algorithm for Generating Triplets

1: procedure GenerateTriplets(people)
2: triplets ← ∅
3: for each person in people do
4: seen ← ∅
5: for each anchor in person.imaдes do
6: seen ← seen ∪ {anchor }
7: for each positive in person.imaдes \ seen do
8: neдative ← sample a random image from all

people except person

9: if Eq. 1 is violated and Eq. 3 is satisfied then
10: triplets ← triplets ∪ {(anchor ,positive,

neдative)}

11: return triplets

For every batch we sampled 720 people and 5 images per person.

These images and identities were then used to produce triplets with

the algorithm given in Algorithm 1.

These remaining triplets were then provided to the model as

inputs utilizing mini-batches of size 90. The images for each triplet

(anchor, positive, negative) were each fed through the model to

produce an output vector. The mini-batch triplet loss shown in

Equation 2 was then computed using these vectors and the gradient

of that loss was used for optimization.

We start with a learning rate of 0.05. Our model was trained for

240 hours and stopped when it appeared to stagnate in performance

improvements. The margin α is set to 0.2. Triplet loss training is

known to easily collapse the model into a degenerate 0 vector for

all identities if the gradients are too large, so we also performed

gradient norm clipping. We trained the entire architecture with the

AdaGrad optimizer [2] as it provided the highest stability in helping

the model avoid collapse. The learning rate was exponentially de-

cayed as training progressed in order to improve convergence of the

model. Weight decay was also applied to constrain the magnitude

of weights.

5 RESULT AND EVALUATION
We tested our client-server system structure by recording the time

our system used to complete the face recognition task.We evaluated

the whole system by making the face recognition request 50 times

and recording the time span of Bluetooth transmission and the

223

Deep Learning Based Face Recognition System with Smart Glasses PETRA’19, June 5–7, 2019, Rhodes, Greece

Figure 5: Collage of Random Faces from VGGFace2 Dataset

total time to receive the recognition result. We first recorded the

time span between users pressing "send request" button and the

captured image being displayed on the phone. Similarly, we also

recorded the total time span between users making a request to

take a picture and the recognition result being displayed on both

the phone’s and the glasses’ screen. The average of 50 trials for

both experiments are shown in table 1. The primary bottleneck is

the transmission speed of the high resolution image between the

devices. The system will scale efficiently as networks expand their

bandwidth due to the primary limiting factor being the transfer

speed. Ignoring transfer time, our model and user profile can detect

and identify a person in an image within 200 milliseconds.

One of the most common cases to deploy our system in social

events is when a user runs the recognition task while approaching a

person of interest. From the average time needed for our system to

complete the face recognition task, we can see that it is an acceptable

time span for user to run face recognition before engaging in a face-

to-face conversation. We also monitored the battery consumption

when performing face recognition task. For most local-running

Table 1: Performance Statistics for Face Recognition Task

Task Average time(seconds)

Bluetooth transmission 5.348s

Total time for user to get result 13.69s

systems, the battery life drops drastically within 100 recognition

tasks. In our experiments, both devices only dropped less than 3%

of the battery life.

Figure 6 visualizes the centroid vector of different identities.

We use t-SNE [17] to reduce the facial embedding from 128 to 2

dimensions and visualize it on a sample of identities from LFW.

Different labeled identities are shown with different colors and

centroid vectors are shown as darker shades of the same color.

We evaluate our back-end model on the LFW dataset on a face

verification task. Namely, given a pair of two face images (i, j), our
model compares the squared L2-distance between their embedding

224

PETRA’19, June 5–7, 2019, Rhodes, Greece Ovidiu Daescu, Hongyao Huang, and Maxwell Weinzierl

Figure 6: Facial embedding and centroid vectors for a sample of identities in LFW dataset

vectors. A threshold D(i, j) is used to determine whether this 2

images belong to the same identity or not. All the images of same

identity are denoted as IDsame , while all the images of different

identities are denoted as IDdif f . We used both accuracy and val-

idation rate to evaluate our model. Our definition of evaluation

metrics are the same as those defined in [13].

The true accepts are the face pairs correctly classified as same

faces at threshold d . It is defined as:

TA(d) = {(i, j) ∈ IDsame ,with D(i, j) ≤ d}. (4)

The false accepts are the face pairs incorrectly classified as same

faces at threshold d . It is defined as:

FA(d) = {(i, j) ∈ IDdif f ,with D(i, j) ≤ d} (5)

The validation rate is defined as:

VAL(d) =
|TA(d)|

|IDsame |
(6)

Similarly, the false accept rate is defined as:

FAR(d) =
|FA(d)|

|IDdif f |
(7)

We follow the standard protocol for unrestricted, labeled outside
data. 10-fold cross validation was used to evaluate our model on the

LFW dataset. Nine training splits are used to select the squared L2-
distance threshold. The tenth split is used to perform classification.

By 10-fold cross validation, our model produced one threshold

for a final accuracy as well as one threshold for a final validation

rate. Final accuracy on the LFW test set is 98.18% with an optimal

threshold of 1.219. Final validation rate is 88.85%with a false accept

rate of 0.001 and an optimal threshold of 0.923. The threshold for

225

Deep Learning Based Face Recognition System with Smart Glasses PETRA’19, June 5–7, 2019, Rhodes, Greece

the final validation rate is also used in further experiments as a

rejection threshold for unknown identities. For any new face image,

we determine if the identity is unknown if the minimum squared

L2-distance between its embedding and the centroid vectors of all

other identities is larger than 0.923.

6 CONCLUSION AND FUTURE RESEARCH
The project’s objective is to produce a real-time facial detection and

recognition system which can run on mobile or wearable glasses to

provide extra information in social events, especially for individuals

who have prosopagnosia.

Such systems have been proposed during past couple years. How-

ever, constraints were imposed (re-training needed for new iden-

tities, large battery consumption). Our system combines modern

computer vision machine learning models with recent wearable

technologies. Two applications both on a pair of smart glasses and

a cellphone as well as a deep convolutional neural network running

on a separate computer were developed. Good results on the accu-

racy of the face recognition task was obtained with the approach

we investigated in our system. We showed that our model is able to

adjust the identity clusters based on new face embedding produced

by the neural network. Thus, no rebuilding process is needed for

new identities. According to our result of the computation effi-

ciency experiment, it is possible for our system to provide identity

information in real-world social events.

In the future, we will be working on optimizing the client applica-

tions for better user experience and higher computation efficiency.

We will experiment with alternate face detectors which may per-

form better in real-world conditions. Additionally, we plan to invite

more people to carry out further experiments over a longer period

of time with more content in order to measure the effects on real

social events. We will also test different back-end models, such

as newer convolutional architectures like DenseNet which makes

more use of residual connections [5]. We will also train larger mod-

els on more powerful machines to improve the performance of face

recognition tasks by processing more details in face images.

REFERENCES
[1] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and ANdrew Zisserman. 2018.

Vggface2: A dataset for recognising faces across pose and age. In 2018 13th IEEE
International Conference on Automatic Face Gesture Recognition (FG 2018)(FG),
Vol. 00. IEEE, 67–74. https://doi.org/10.1109/FG.2018.00020

[2] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121–2159.

[3] Thomas Grüter, Martina Grüter, and Claus-Christian Carbon. 2008. Neural

and genetic foundations of face recognition and prosopagnosia. Journal of
Neuropsychology 2, 1 (2008), 79–97. https://doi.org/10.1348/174866407X231001

[4] Kaiming He, Xiangyu Zhang, Weidi Xie, Shaoqing Ren, and Jian Sun. 2016. Deep

Residual Learning for Image Recognition. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 770–778.

[5] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian QWeinberger. 2017.

Densely connected convolutional networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.

[6] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. 2007. La-
beled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained
Environments. Technical Report 07-49. University of Massachusetts, Amherst.

[7] Vahid Kazemi and Josephine Sullivan. 2014. One millisecond face alignment with

an ensemble of regression trees. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 1867–1874.

[8] Ingo Kennerknecht, Thomas Grueter, Brigitte Welling, SebastianWentzek, Jürgen

Horst, Steve Edwards, and Martina Grueter. 2006. First report of prevalence of

non-syndromic hereditary prosopagnosia (HPA). American Journal of Medical
Genetics Part A 140, 15 (2006), 1617–1622. https://doi.org/10.1002/ajmg.a.31343

[9] Sreekar Krishna, Greg Little, John Black, and Sethuraman Panchanathan. 2005.

A wearable face recognition system for individuals with visual impairments. In

Proceedings of the 7th international ACM SIGACCESS conference on Computers
and accessibility (Assets ’05). ACM, New York, NY, USA, 106–113. https://doi.

org/10.1145/1090785.1090806

[10] Guangcan Mai, Kai Cao, Pong C. YUEN, and Anil K. Jain. 2018. On the Recon-

struction of Face Images from Deep Face Templates. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2018), 1–1. https://doi.org/10.1109/TPAMI.

2018.2827389

[11] Bappaditya Mandal, Shue-Ching Chia, Liyuan Li, Vijay Chandrasekhar, Cheston

Tan, and Joo-Hwee Lim. 2014. A wearable face recognition system on google

glass for assisting social interactions. In Computer Vision - ACCV 2014 Workshops.
Springer, Springer International Publishing, 419–433.

[12] Davide Rivolta. 2014. Prosopagnosia: The Inability to Recognize Faces.
Springer Berlin Heidelberg, Berlin, Heidelberg, 41–68. https://doi.org/10.1007/

978-3-642-40784-0_3

[13] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A

Unified Embedding for Face Recognition and Clustering. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 815–823.

[14] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.

2017. Inception-v4, inception-resnet and the impact of residual connections on

learning.. In AAAI, Vol. 4. 12.
[15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.

Going Deeper With Convolutions. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[16] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. DeepFace:

Closing the Gap to Human-Level Performance in Face Verification. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition. 1701–1708. https://doi.

org/10.1109/CVPR.2014.220

[17] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

Journal of machine learning research 9, Nov (2008), 2579–2605.

[18] Xi Wang, Xi Zhao, Varun Prakash, Weidong Shi, and Omprakash Gnawali.

2013. Computerized-eyewear based face recognition system for improving

social lives of prosopagnosics. In Proceedings of the 7th International Con-
ference on Pervasive Computing Technologies for Healthcare (PervasiveHealth
’13). ICST (Institute for Computer Sciences, Social-Informatics and Telecom-

munications Engineering), ICST, Brussels, Belgium, Belgium, 77–80. https:

//doi.org/10.4108/icst.pervasivehealth.2013.252119

[19] Wenyi Zhao, Rama Chellappa, P. Jonathon Phillips, and Azriel Rosenfeld. 2003.

Face recognition: A literature survey. ACM computing surveys (CSUR) 35 (2003).

226

https://doi.org/10.1109/FG.2018.00020
https://doi.org/10.1348/174866407X231001
https://doi.org/10.1002/ajmg.a.31343
https://doi.org/10.1145/1090785.1090806
https://doi.org/10.1145/1090785.1090806
https://doi.org/10.1109/TPAMI.2018.2827389
https://doi.org/10.1109/TPAMI.2018.2827389
https://doi.org/10.1007/978-3-642-40784-0_3
https://doi.org/10.1007/978-3-642-40784-0_3
https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.4108/icst.pervasivehealth.2013.252119
https://doi.org/10.4108/icst.pervasivehealth.2013.252119

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Overview of Face Recognition System
	3.1 Implementation of Client-Server Architecture

	4 Face Recognition Model
	4.1 Dataset and Preprocessing
	4.2 Training

	5 Result and Evaluation
	6 Conclusion and Future Research
	References

